Abstract

The subject of this Ph.D. thesis is the mathematical Radon transform, which is well suited for
curve detection in digital images, and for reconstruction of tomography images. The thesis is
divided into two main parts.

Part I describes the Radon- and the Hough-transform and especially their discrete approxim-
ations with respect to curve parameter detection in digital images. The sampling relationships
of the Radon transform is reviewed from a digital signal processing point of view. The discrete
Radon transform is investigated for detection of curves, and aspects regarding the performance of
the Radon transform assuming various types of noise is covered. Furthermore, a new fast scheme
for estimating curve parameters is presented.

Part II of the thesis describes the inverse Radon transform in 2D and 3D with focus on re-
construction of tomography images. Some of the direct reconstruction schemes are analyzed,
including their discrete implementation. Furthermore, several iterative reconstruction schemes
based on linear algebra are reviewed and applied for reconstruction of Positron Emission Tomo-
graphy (PET) images. A new and very fast implementation of 2D iterative reconstruction methods
is devised. In a more practical oriented chapter, the noise in PET images is modelled from a very
large number of measurements.

Several packages for Radon- and Hough-transform based curve detection and direct/iterative
2D and 3D reconstruction have been developed and provided for free.






Resume pa dansk (Abstract in Danish)

Emnet for denne Ph.D. athandling er den matematiske Radontransformation, der er velegnet til
detektion af kurver i digitale billeder og til rekonstruktion af tomografiske billeder. Afhandlingen
er opbygget i to dele.

Del I beskriver Radon- og Hough-transformationen og specielt deres diskrete approximationer
med henblik pé estimation af kurve parametre i digitale billeder. Der er beskrevet samplings-
relationer for Radontransformationen ud fra et digital signalbehandlingssynspunkt. Den diskrete
Radontransformation er undersggt med henblik pa detektion af kurver, og der er behandlet as-
pekter vedrgrende metodens anvendelighed under antagelse af forskellige typer st@j. Desuden er
praesenteret en ny og hurtig metode for estimation af kurve parametre.

Del IT af afhandlingen beskriver den inverse Radontransformation i 2D og 3D med fokus pa
rekonstruktion af tomografiske billeder. Flere af de direkte rekonstruktionsmetoder er analyseret
inklusiv deres diskrete implementering. Desuden er der gennemgaet en raekke linezer algebra
baserede iterative rekonstruktionsmetoder, og de er anvendt til rekonstruktion af Positron Emis-
sion Tomografi (PET) billeder. En ny og meget hurtig implementering af 2D iterative rekonstruk-
tionsmetoder er foreslaet. I et mere praktisk orienteret kapitel er stgj i PET billeder modelleret
ud fra et stort antal malinger.

Et st programpakker er blevet udviklet til Radon- og Hough-transformation baseret detek-
tion af kurve parametre og til direkte/iterativ 2D og 3D rekonstruktion, og de bliver stillet gratis
til radighed.
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Preface

The Ph.D. project has been carried out from March 1, 1993 to May 31, 1996 at the Department
of Mathematical Modelling (before January 1, 1996 Electronics Institute), Technical University
of Denmark with supervisors John Aasted Sgrensen and Peter Koefoed Mgller.

The image on the front page shows the surface of a brain generated by PET scanning. The
measured sinograms have been reconstructed and the brain volume has been shown using a 3D
visualization package.

Contents

This Ph.D. thesis entitled The Radon Transform - Theory and Implementation is divided into
two main parts. Part I consists of Chapters 1 to 5 and Part II of Chapters 6 to 11. Appendices are
collected in Part I1I, and finally Part IV contains the papers submitted to journals and conferences.

In Chapter 1, the Radon transform is presented in the form used within seismics. Discrete
approximations are derived, and it is shown that the Radon transform is well suited for curve
parameter estimation, and in this chapter a new way of analyzing sampling relationships is in-
troduced. Several properties are presented along with a set of examples using discrete Radon
transformation. Optimization strategies for implementation of the discrete Radon transform are
given, and some of the limitations concerning the allowed interval of slopes are also presented. A
way to circumvent this restriction is also given.

Another way of defining the Radon transform (using normal parameters) is used in Chapter
2, and sampling relationships are derived. It is shown how this form of the Radon transform is
related to the form analyzed in Chapter 1, and that the two definitions mainly cover different
types of images. In Chapter 2, the images are assumed quadratic and the lines can have arbitrary
orientation.

A very popular Radon-like transform is the Hough transform, which is described in Chapter 3.
Possibilities, limitations, and an optimization strategy are given along with a set of examples. Here
it is also shown that the discrete Hough transform is identical to the discrete Radon transform, if
some of the sampling parameters are restricted.

The Radon and the Hough transforms are generalized in order to handle more general paramet-
erized curve types. The properties of the two transforms are then exploited in the FCE-algorithm
[1, 2], which is proposed for fast curve parameter estimation. The potential of the algorithm is
demonstrated in two examples.

One of the very strong features of the discrete Radon transform regards noise suppression,
which is covered theoretically in Chapter 5. A novel analysis of the influence of both additive
noise [3] and uncertainty on the line samples [4] is presented.
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In Chapter 6 the thesis changes its aim and describes computerized tomography with respects
to reconstruction of PET- and CT-images. A simplified description of the fundamental physics is
given and it is motivated why the inverse Radon transform can be used for reconstruction of the
measured sinograms.

Several of the common direct inverse Radon schemes are derived in Chapter 7. First using
normal parameter, and later in this chapter similar inversion schemes are derived for slant stacking.

The implementation of the Radon based reconstruction methods impose the use of several
different elements which are reviewed from a digital signal processing point of view in Chapter
8, but only for the Radon transform using normal parameters. Chapter 8 also includes a set of
examples, made with a developed software package. This and other developed software packages
are provided for free.

A very different approach for developing reconstruction algorithms is based on linear algebra
and statistics. In Chapter 9 the basis of these methods are shown, and the relationship with
that the direct reconstruction methods is reviewed. This chapter illustrates that a broad field
of research areas have contributed directly or indirectly to the field of reconstruction methods.
Iterative reconstruction methods are reviewed and a very fast implementation of 2D iterative
reconstruction algorithms [5, 6] is proposed. A set of examples are included, where PET-images
(or PET-like images) are reconstructed from noisy sinograms and the performance of the 2D fast
iterative reconstruction package is reviewed.

Next Chapter 10, goes into reconstruction of volumes using 3D PET scanners. Some of
the Radon transform based reconstruction methods are derived and some of the implementation
aspects are reviewed. A software package has been developed, where Radon based and iterative
reconstruction methods have been implemented. It is shown that most of the methods can be
implemented efficiently on a parallel computer, and a few examples are presented.

The final chapter in the main thesis is Chapter 11, which is of a more practical nature. From
a huge set of measurements on phantoms and humans the noise in reconstructed PET images has
been modelled and model parameters have been estimated [7, 8].

It should be mentioned that a part of the work done in this project is far better presented
using the World Wide Web tools of movies and virtual reality objects. It has been chosen to avoid
color images in the thesis, even though that colors normally will enhance the visual impression.
MPEG movies and 3D virtual objects can be found at the Human Brain Project WW W-server
[9]. This thesis is available as a Postscript file, which can be down-loaded from [10].

Collaborations

Chapter 4 present work made in collaboration with Kim Vejlby Hansen. The work has been
carried out as a joint venture project between ddegaard & Danneskiold-Samsge and Department
of Mathematical Modelling (before January 1, 1996 Electronics Institute), Technical University of
Denmark. The ideas and results have been presented at the EUSIPCO Conference 94 in Edin-
burgh, Scotland, and at the Interdisciplinary Inversion Summer School 94 in Mgnsted, Denmark,
and published in [1, 2]. These papers are shown in Appendices G and H. Kim Vejlby Hansen and
I had a very long and good collaboration. He and Peter Koefoed Mgller are thanked for getting
me into the area of the Radon transform in the first place.

Chapters 6, 7, and 8 are inspired by my stay at the National University Hospital in Copenhagen
(Rigshospitalet) and by two masters projects carried out at that time. Software packages have
been made for 2D direct reconstruction of PET images, and one for analytical generation of
sinograms from a set of primitives. These packages can be used for quantifying the quality of
reconstruction algorithms. I will like to thank Claus Svarer and Karin Stahr for making our stay
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very good, and especially Sgren Holm with whom I have had a long and fruitful collaboration. I
have learned much about PET and tomography in general from him. My former students Peter
Philipsen and Jesper James Jensen are acknowledged for their collaboration and hard work. We
have spent many joyful hours together, and their efforts have meant much to me.

In Chapter 9 the fundamentals of linear algebra based reconstruction methods are covered
with special focus on the implementation of iterative reconstruction methods. For this work I
had the pleasure of working with Jesper James Jensen. We developed a very fast technique for
implementing most 2D iterative reconstruction methods. This work has been submitted in [5] and
[6], shown in Appendix L and M, respectively.

Some of the functions in the 3D reconstruction package presented in Chapter 10 has been
made by Peter Philipsen and he helped by adding the compiler options needed to speed up the
program on the Onyx-computer from Silicon Graphics (SGI).

Chapter 11 covers recent work made together with Sgren Holm, where noise in PET recon-
structed images has been modelled and the model parameters have been estimated from a huge set
of measurements. The results have been presented at the IEFE Medical Imaging Conference 95
in San Francisco USA, and published in a short version [7], shown in Appendix J, and submitted
in a longer version in [8], shown in Appendix K.

In Appendix N the published papers [11, 12] are shown, where mean field techniques have been
used to improve image quality by using strong priors in the restoration of PET reconstructed
images. This work was made with Lars Kai Hansen and Peter Philipsen. It has been presented
at the Fourth Danish Conference for Pattern Recognition and Image Analysis 95 in Copenhagen,
Denmark and at the Interdisciplinary Inversion Conference 95 in Arhus, Denmark.
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Style Conventions

e References to the bibliography placed in the end of the thesis will appear as [13] or [14, 15].

e Equation and Figure has been abbreviated to Eq. and Fig. Likewise Equations and Figures
to Egs. and Figs.

e Equations, tables, and figures are numbered by the chapter, i.e., Eq. 10.2 is the second
equation in Chapter 10.

e The appendices are numbered using capitals, starting with Appendix A.

e Normally the letters m,n, k, h,l are used to denote integer type variables, and the letters
z,1, z denote continuous variables.

e Vectors are denoted by bold-faced small letters or Greek letters, like b or &.
e Transpose of a vector b is shown as b’ .

e Matrices are denoted by bold-faced capital letters, like A. A real valued matrix with I rows
and J columns are denoted A € IR’*’ The individual elements are a;; corresponding to
row ¢ and column j.

e Vectors are always column vectors, and the i’th rows of the matrix are denoted a;, i.e.,

e Program examples in pseudo C-code will use the sans serif font and symbols using that font
refers to the pseudo-code. An examples of pseudo-code are called an Algorithm, which
looks like

ALGORITHM 0.1 : SMALL EXAMPLE

For k = 0 to K-1 //Help is placed like this
p(k) = p-min+kx*Delta_p //Multiplication in algorithms use *
End

ix



Vector indices in equations starts from 1, but in order to aid implementation i C or C++
the indices start from 0 in the pseudo code. Given that the pseudo code is intended for
overview, this should not lead to confusion.

The delta function is denoted by é(-). This function is reviewed in Appendix A.

The Hamilton step function is denoted by u(-). The function is zero if the argument is
negative, and one if the argument is positive.

Rounding to the nearest upper integer, [-].

Rounding to the nearest lower integer, |-]. In an algorithm the function floor is used.
Rounding to the nearest integer, [-]. In an algorithm the function round is used.
Fourier transform pairs are marked as g(t) <> G(f).

In equation convolutions are denoted by * for a one dimensional, ** for a two-dimensional,
and * *x % for a three-dimenisonal convolution.

In the algorithms, i.e., pseudo-code, no convolutions are found and the symbol * will be
used as a simple multiplication.

The scalar product between to (column) vectors @ and b are denoted by a - b = a’b.
The symbol V denotes ‘for all’.

The length of vectors are normally denoted by | - |, but in Chapter 9 the linear algebra
notation || - ||2 has been used, given by [lv|l2 = Vvlv = /3, ’UJQ-.
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